Retreat to Subsistence | The Nation


Retreat to Subsistence

  • Share
  • Decrease text size Increase text size

Last year the Union of Concerned Scientists released Failure to Yield: Evaluating the Performance of Genetically Engineered Crops, a report that surveyed applications to the Agriculture Department seeking permission for field trials of new types of transgenes. (Applications for the tests are public; the test results are confidential.) The report found that, from among thousands of applications, none beyond implants of single genes with Bt or with glyphosate resistance had resulted in commercially successful products (the report excluded a small number of virus-resistant traits). Failure to Yield attributed this state of affairs to the complexity of the roles played by the genes being experimented with (including transcription factors) and described these genes as being "parts of genetic networks that have multiple and far-reaching effects on the growth or development of the plant." Unlike the single-gene products now on the market, the report noted, the multiple-gene applications had greater potential for "deleterious unintended side effects."

Ex Mex
From Migrants to Immigrants
By Jorge Castañeda
Buy this book

Sin Maíz, no Hay País
Edited by Gustavo Esteva and Catherine Marielle

NAFTA’s Promise and Reality
Lessons From Mexico for the Hemisphere
By the Carnegie Endowment for International Peace.
Available at carnegieendowment.org

The Impact of Genetically Engineered Crops on Farm Sustainability in the United States
By the National Research Council
Buy this book

Environmental Effects of Transgenic Plants
The Scope and Adequacy of Regulation
By the National Research Council
Buy this book

Maize and Biodiversity
The Effects of Transgenic Maize in Mexico
By the Commission for Environmental Cooperation
Available at cec.org

Failure to Yield
Evaluating the Performance of Genetically Engineered Crops
By the Union of Concerned Scientists
Available at ucsusa.org


About the Author

Peter Canby
Peter Canby is a senior editor at The New Yorker and the author of The Heart of the Sky: Travels Among the Maya (...

Also by the Author

The brutal murder of a bishop and its violent aftermath exemplify post-civil war Guatemala's descent into chaos

As the planet warms and global catastrophe beckons, what changes are we willing to make to adjust to a brave new world? Tim Flannery and Elizabeth Kolbert seek answers in two provocative new books.

Farmers have recently faced other problems with genetically modified crops. The seed industry has become concentrated in very few hands, and prices have soared. In the meantime, a number of weeds that had, until recently, been killed by glyphosate have evolved glyphosate resistance with alarming speed, requiring farmers to revert to older herbicides and dampening the appeal of the expensive modified seeds. One Iowa State weed scientist described the situation to the New York Times as "Darwinian evolution in fast forward."

Failure to Yield also looked at crop yield and concluded that genetically modified crops had done substantially less to increase yield than a number of more conventional measures, ranging from organic farming to a technologically sophisticated form of genetic breeding known as "marker-assisted selection." This has not led anyone to conclude that the engineering of transcription factors or other such complex multigene undertakings are unattainable but, rather, that their imminence may be overstated. "Eventually we will be able to engineer more than a single gene," Goodman says, "but there are complications, and it will take a hell of a long time to work them out."

This raises a question. Gepts had explained to me that many of the traits found in landrace corn are located in complex "suites" of genes. These traits include such properties as flowering time, crop yield and drought resistance. Considering that the multiple attributes of landrace corn are themselves the product of a sophisticated, longstanding tradition of crop breeding, would it be fair to think of landrace corn as having already achieved, on some level, the very properties that genetic-engineering firms were spending hundreds of millions of dollars to try to breed into commercial corn? If so, how had peasant farmers done this?

"In indigenous fields," Gepts told me, "these suites result from both environmental pressures and from farmer selection—probably more from the latter. These suites contain traits that have been selected by farmers over time," he said, "farmers with a very keen understanding of plants."

After leaving Aldo González's milpa I traveled west into the high, dissected plateau that is the home of the Mixtecs, Oaxaca's second-largest indigenous group. I had arranged to meet Jesús León Santos, the head of a Mixtec organization known as CEDICAM, which works to support traditional Mixtec agriculture. In recognition of CEDICAM's efforts, Jesús León had won a prize not long before from the Goldman Environmental Foundation in San Francisco.

Jesús León met me in his battered pickup truck outside the Mixtec town of Nochixtlán. As we drove, he recited a maxim of his father's: "Plant to eat first or you'll wind up working for others." He spoke of pressure from the government to persuade Mixtecs to plant hybrids, abandon their traditional landraces and use chemical fertilizers. He recounted the post-NAFTA decline in prices paid for corn and the simultaneous sharp rise in the price of fertilizers. ("Fertilizers damage the land, but the biggest damage is to the people, because they lose the ability to live off the land," he said.) He described government policies of descampesinoización—getting rid of small farmers—and of efforts to turn farmers into manos de obra, workers for factories and maquiladoras. He reflected on the toll of emigration: how it was mostly men who left and that husbandless households damaged the transmission of values between generations ("It will have an effect in the future").

Eventually, we arrived at Jesús León's milpa. He pointed out the landrace corn, squash, beans, a wild potato and various quelites—a Nahuatl word that has become a generic indigenous term for usable milpa weeds. I asked Jesús León about the ways milpa agriculture seemed to be about improving on nature, on natural processes.

He stopped—with the whole vulnerable world of traditional human agriculture around his feet. "No," he said, and seemed to care deeply that I follow precisely what he was saying. "It's not a way of improving nature—it's a way of getting closer to the processes of nature, getting as close as possible to what nature does."

  • Share
  • Decrease text size Increase text size