Can GMOs Help Feed a Hot and Hungry World? | The Nation


Can GMOs Help Feed a Hot and Hungry World?

  • Share
  • Decrease text size Increase text size

(Illustration by Tim Robinson)

Eduardo Blumwald’s genetically modified plants don’t look much like “Frankenfood.” Filling four modest greenhouses in a concrete lot behind Blumwald’s laboratory at the University of California, Davis, the tiny seedlings, spiky grasses, alfalfa, and peanut and rice plants in plastic terracotta-colored pots look exactly like the ordinary varieties from which he and his fellow researchers created them. Blumwald’s lab lies just ten miles from Monsanto’s 90,000-square-foot vegetable seed building, a glassy edifice larger than the hangar for a 747. The Monsanto facility is one of the largest centers in the world for plant breeding and genetic engineering. But in the fourteen years that Blumwald, a professor of cell biology, has worked here studying the DNA of crop plants, he has hardly ever spoken to anyone from Monsanto.

Blue-eyed and round-faced, with a lilting Argentinian accent, Blumwald grows exasperated when he talks about the so-called “Big Ag” companies, which he says have been arrogant in dealing with the public, contributing to a distrust of biotech research. But he also doesn’t appreciate the activists who’ve been challenging not only the Monsantos of the world but the entire field of genetic engineering.

“You want to penalize the multinationals; I have no problem with that,” he tells me in his office at the university’s plant biology building. “But because of your political stance against multinationals, you are going to condemn maybe the only viable solution we have for our future? It’s wrong—absolutely wrong.”

Blumwald means the hot future that we expect by 2050—when a world population of 9.5 billion people will scramble to put food on the table, while at least thirty-seven separate countries face extreme water crises. Blumwald thinks that part of the answer is to genetically engineer crops that can better withstand drought, and so he and his researchers are scouring the world for varieties of fruits, vegetables and some basic staples—rice, millet, wheat, maize—that grow well without much water. Then, using a device called a “gene gun,” which inserts DNA on microscopic gold particles, or a soil bacterium capable of changing plant genes, they alter or silence parts of the plant’s genome, adjusting how and when the plant makes the hormones that let it know when to grow and when to wither. The researchers say the methods are more precise and much faster than developing new plant varieties by conventional breeding, which can take decades.

When I tour the rows of rice and peanuts with one of Blumwald’s assistants, a postdoctoral researcher from Madrid, the air in the greenhouse is soupy. About two dozen researchers work in Blumwald’s lab, many of them from hot parts of the world with swelling populations, including Brazil, China and the United Arab Emirates. In the greenhouse, the researchers force the rice to cope with heat and deprive it of water just as it’s about to set seed. So far, the genetically altered rice is outperforming the natural kind—given less moisture, the non-engineered rice browns and wilts, but the new plant survives. Blumwald’s goal is to create crops that won’t keel over as quickly when things get hot, dry and stressful—plants that will improve the odds that a farmer can produce food even in a drought.

In about forty years, relentless dry spells may be more frequent across the Southwest, say climate scientists, and California may have more dry years like this one, in which a drought has crippled the agricultural sector. But the state, one of the most fiercely contested battlegrounds in a worldwide fight over the use of genetically modified organisms (GMOs), isn’t the most inviting home for research like Blumwald’s. Since the 1980s, activists here have run a series of campaigns to require the labeling of GM products and an outright ban on GMO cultivation. Blumwald says the controversy over GMOs has made it more difficult to pursue his research and obtain funding. And even if his GM plants could be an important part of the solution to climate change, they may never make their way into the hands of commercial farmers. Who will invest in his plants, test them in the field and market them if they attract boycotts, protests and lawsuits that make business difficult and consumers skittish?

Many biotech researchers and agronomists argue that a combination of bad will generated by Big Ag and misdirected public outrage is stifling important technological advances in agriculture—innovations that could help prevent famine, fight crop diseases and cope with climate change. But countless activists disagree. The Organic Consumers Association, a nonprofit agricultural watchdog group, says genetic engineering will never deliver on promises to feed a growing population and isn’t a trustworthy technology. “The dirty secret of the biotech industry is, after thirty years, they haven’t done anything for consumers,” said Andrew Kimbrell, the founder and executive director of the Center for Food Safety, in a speech at a national heirloom-seed fair in Santa Rosa, California. “No better taste, no more nutrition, zero benefits,” and a number of “potential risks.”

Over the past several years, the political fight over GMOs has become supercharged, and much of the controversy has been driven by a distrust of big business—and of any of the novel biotechnologies it might produce.

“The same corporations that brought us DDT and Agent Orange now want to deny us our right to know what’s in our food,” argued California Right to Know during a 2012 campaign that brought together a coalition of organic farmers, environmental organizations, grassroots groups like Moms Advocating Sustainability, and companies like Clif Bar and Dr. Bronner’s Magic Soaps. Two years ago, this coalition attempted to pass a statewide referendum that would have required the labeling of food containing GMOs. The anti-GMO activists were vastly outspent: Monsanto alone invested $8 million in efforts to defeat the measure. But the pro-labeling campaign helped launch a movement. This year alone, a series of similar initiatives have been proposed in twenty states, according to the Center for Food Safety; this past April, Vermont became the first state to pass a GMO labeling law. The Grocery Manufacturers Association and several other trade groups have filed a lawsuit to overturn it.

The California campaign’s messages were a jab at Monsanto, in part. Since the 1940s, the company has been manufacturing and selling chemicals, including DDT, the now-banned herbicide that contributed to the near-extinction of bald eagles in the twentieth century. In the 1960s, the company distributed a brochure mocking Rachel Carson’s seminal work, Silent Spring, the book that first brought widespread public attention to the dangers of pesticides and launched the modern environmental movement. Around the same time, Monsanto was producing Agent Orange, the chemical weapon used to strip vegetation in Vietnam war zones—and later linked to birth defects and cancers there and in the United States.

  • Share
  • Decrease text size Increase text size

Before commenting, please read our Community Guidelines.