Quantcast

Sowing Disaster? | The Nation

  •  

Sowing Disaster?

  • Share
  • Decrease text size Increase text size

As for Mexico, the biotech industry itself no longer even disputes Chapela's assertions that transgenic corn made its way over that "ironclad wall" into Oaxaca. Rather, according to Dr. Phillips of BIO, the fact that GE crops are in Mexico's soil now, despite the government planting ban, should be an invitation to let more in. "If you're the government of Mexico," he says, "hopefully you've learned a lesson here and that is that it's very difficult to keep a new technology from entering your borders, particularly in a biological system.... It really is incumbent upon the Mexican government to step up the process and get their regulatory system in place so that [they] can begin accepting these products and give farmers the opportunity to choose."

Mark Schapiro was the correspondent for NOW With Bill Moyers on the
version of this story that aired on October 4. Research support was
provided by the Investigative Fund of the Nation Institute and The Center for Investigative Reporting.

About the Author

Mark Schapiro
Mark Schapiro is an investigative journalist in New York specializing in foreign affairs. In addition to The Nation,...

Also by the Author

As safety scandals dampen the public's appetite for cheap imports, the European Union is raising doubts about standards and oversight in the US toy industry.

The EU is an emerging geopolitical force that corporate America must reckon with.

American farmers, both those growing organic and non-GMO conventional corn, have paid a heavy price for the porousness of that "biological system." The American Corn Growers Association, representing corn producers in twenty-eight states, estimates that US corn farmers have lost more than $814 million in foreign sales over the past five years as a result of restrictions on genetically modified food imports imposed by Europe, Japan and other world buyers. That enormous figure doesn't even account for the depressed prices farmers now receive for their corn as a result of an oversupply (of unexported corn) on the domestic market--with a deleterious effect on farmers' livelihood that the recent farm bill attempts to address with up to $20 billion in subsidies. For every American taxpayer, that amounts to a personal subsidy to the agricultural biotech industry.

Defying evolution by customizing traits that would never appear in nature holds out the dream of new markets--and premium prices--in the evergreen enterprise of food production. But the dream, even according to the USDA's own assessments, is turning sour. While promoting agricultural biotechnology with one hand, the department's Economic Research Service is reporting, with the other, that not only are yields not coming anywhere near expectations, but that genetically engineered corn and soybeans have not meant an overall improvement in the financial status of farmers.

Still, the horizons of agricultural biotechnology continue to expand. I am driving in a van with Dr. Kan Wang, an agronomist at Iowa State University in Ames. We turn off a country lane onto a dirt road and into the woods. A student of Dr. Wang's unlocks a gate, and we continue driving on the dirt road through the woods until we reach an extraordinary sight: a tiny cornfield, set amid a large soybean field, in the middle of the woods. This is where the next generation of genetic engineering is unfolding: Dr. Wang is conducting research into the development of vaccines in corn.

In the field a hundred or so corn plants are surrounded by an electric fence. Each tassel is capped by a brown paper bag, what Wang jokingly refers to as a "corn condom." I am here to witness corn sex, or, really, safe sex for corn. The reason? Wang is experimenting with a vaccine in this corn that will prevent diarrhea in baby pigs: When pigs eat the corn, she wants them to be immunized against a disease that is costing hog farmers millions of dollars in losses each year. And they don't want the corn pollen flowing anywhere they don't want it to go; nor do they want any outside pollen fertilizing these special plants. Thus the corn condoms. Right now, Wang is testing the corn to insure that it's not also developing potential allergens for the pigs. And if it works for pigs, says Wang, "it could work for humans too."

This is the future of agricultural biotechnology. One might have some measure of confidence with the prospect of corn vaccines in the hands of Dr. Wang, the only scientist in the country working exclusively with public funding to explore the possibilities--and risks--of breeding medicines into corn. She has taken extreme precautions with this field: It is miles away from any neighboring corn, and is surrounded by soybeans and woods, with which corn has no chance of cross-pollinating.

But Dr. Ellstrand, the plant geneticist, fears what might happen when the pharmaceutical industry, which is now testing corn as a vehicle for antibiotics and vaccines, starts putting such medicines into mass production. "Corn produces a lot of pollen," he says. "And once there's a little bit of contamination, there's the potential for releasing pharmaceutical corn genes into food crops."

Thus far, the record has not been reassuring. Farmers like Laura Krause and Olga Maldonado have already, through the various routes that a living organism may travel, been the recipients of unwanted transgenes propelled beyond the barriers of control.

Standing in his Berkeley, California, greenhouse, Ignacio Chapela, the scientist who ignited the controversy in Mexico, comments: "The genie is out of the bottle. What we are confronted with now is just thousands of very different genies that are still in their bottles, and the question is this: Do we want to keep those bottles closed or are we opening them?"

  • Share
  • Decrease text size Increase text size

Before commenting, please read our Community Guidelines.