Quantcast
Twitter has not been configured yet. Please contact your admin.

The Search for BP's Oil | The Nation

  •  

The Search for BP's Oil

  • Share
  • Decrease text size Increase text size

Being out in the open gulf today, I find it is impossible not to be awed by nature's capacity to cleanse and renew itself. At the height of the disaster, I had looked down at these waters from a Coast Guard aircraft. What I saw changed me. I realized that I had always counted on the ocean to be a kind of outer space on earth, too mysterious and vast to be fundamentally altered by human activity, no matter how reckless. Now it was covered to the horizon in gassy puddles like the floor of an auto repair shop. Shouting over the roaring engines, a fresh-faced Coast Guard spokesman assured the journalists on board that within months, all the oil would be gone, broken down by dispersants into bite-size morsels for oil-eating microbes, which would, after their petroleum feast, promptly and efficiently disappear—no negative side effects foreseen.

Media

We Recommend

Why is a slimy substance made up of dead plankton and other organisms coating the floor of the Gulf of Mexico?

About the Author

Naomi Klein
Naomi Klein
Naomi Klein’s new book, This Changes Everything: Capitalism vs. the Climate, will be published this September by...

Also by the Author

What if, instead of accepting a future of climate catastrophe and private profits, we decide to change everything?

The climate crisis has such bad timing, confronting it not only requires a new economy but a new way of thinking.

At the time I couldn't believe he could feed us this line with a straight face. Yet here that body of water is, six months later: velvety smooth and, according to the tests conducted on the WeatherBird II, pretty clean, at least so far. Maybe the ocean really is the world's most powerful washing machine: throw in enough dispersant (the petrochemical industry's version of Tide), churn it around in the waves for long enough, and it can get even the toughest oil spills out.

"I despise that message—it's blindly simplified," says Ian MacDonald, a celebrated oceanographer at Florida State University. "The gulf is not all better now. We don't know what we've done to it."

MacDonald is arguably the scientist most responsible for pressuring the government to dramatically increase its estimates of how much oil was coming out of BP's well. He points to the massive quantity of toxins that gushed into these waters in a span of three months (by current estimates, at least 4.1 million barrels of oil and 1.8 million gallons of dispersants). It takes time for the ocean to break down that amount of poison, and before that could happen, those toxins came into direct contact with all kinds of life-forms. Most of the larger animals—adult fish, dolphins, whales—appear to have survived the encounter relatively unharmed. But there is mounting evidence that many smaller creatures—bacteria, phytoplankton, zooplankton, multiple species of larvae, as well as larger bottom dwellers—were not so lucky. These organisms form the base of the ocean's food chain, providing sustenance for the larger animals, and some grow up to be the commercial fishing stocks of tomorrow. One thing is certain: if there is trouble at the base, it won't stay there for long.

According to experiments performed by scientists at the University of South Florida, there is good reason for alarm. When it was out in the gulf in August, the WeatherBird II collected water samples from multiple locations. Back at the university lab, John Paul, a professor of biological oceanography, introduced healthy bacteria and phytoplankton to those water samples and watched what happened. What he found shocked him. In water from almost half of the locations, the responses of the organisms "were genotoxic or mutagenic"—which means the oil and dispersants were not only toxic to these organisms but caused changes to their genetic makeup. Changes like these could manifest in a number of ways: tumors and cancers, inability to reproduce, a general weakness that would make these organisms more susceptible to prey—or something way weirder.

Before we left on the cruise, I interviewed Paul in his lab; he explained that what was so "scary" about these results is that such genetic damage is "heritable," meaning the mutations can be passed on. "It's something that can stand around for a very long time in the Gulf of Mexico," Paul said. "You may be genetically altering populations of fish, or zooplankton, or shrimp, or commercially important organisms.... Is the turtle population going to have more tumors on them? We really don't know. And it'll take three to five years to actually get a handle on that."

The big fear is a recurrence of what happened in Prince William Sound after the Exxon Valdez spill. Some pink salmon, likely exposed to oil in their larval stage, started showing serious abnormalities, including "rare mutations that caused salmon to grow an extra fin or an enlarged heart sac," according to a report in Nature. And then there were the herring. For three years after the spill, herring stocks were robust. But in the fourth year, populations plummeted by almost two-thirds in Prince William Sound and many were "afflicted by a mysterious sickness, characterised by red lesions and superficial bleeding," as Reuters reported at the time. The next year, there were so few fish, and they were so sick, that the herring fishery in Prince William Sound was closed; stocks have yet to recover fully. Since Alaskan herring live for an average of eight years, many scientists were convinced that the crash of the herring stocks was the result of herring eggs and larvae being exposed to oil and toxins years earlier, with the full effects manifesting themselves only when those generations of herring matured (or failed to mature).

Could a similar time bomb be ticking in the gulf? Ian MacDonald at Florida State is convinced that the disturbances beginning to register at the bottom of the food chain are "almost certain to ripple up through other species."

Here is what we know so far. When researchers from Oregon State University tested the waters off Grand Isle, Louisiana, in June, they found that the presence of carcinogenic polycyclic aromatic hydrocarbons (PAHs) had increased fortyfold in just one month. Kim Anderson, the toxicologist leading the study, described the discovery as "the largest PAH change I've seen in over a decade of doing this." June is spawning season in the gulf—the period, beginning in April, when enormous quantities of eggs and larvae drift in nearly invisible clouds in the open waters: shrimp, crabs, grouper, bluefin tuna, snapper, mackerel, swordfish. For western Atlantic bluefin, which finish spawning in June and are fished as far away as Prince Edward Island, these are the primary spawning grounds.

John Lamkin, a fisheries biologist for NOAA, has admitted that "any larvae that came into contact with the oil doesn't have a chance." So, if a cloud of bluefin eggs passed through a cloud of contaminated water, that one silent encounter could well help snuff out a species already on the brink. And tuna is not the only species at risk. In July Harriet Perry, a biologist at the University of Southern Mississippi, found oil droplets in blue crab larvae, saying that "in my forty-two years of studying crabs I've never seen this." Tellingly, this vulnerability of egg and larvae to oil does not appear to have been considered when the Macondo well was approved for drilling. In the initial exploration plan that BP submitted to the government, the company goes on at length about how adult fish and shellfish will be able to survive a spill by swimming away or by "metaboliz[ing] hydrocarbons." The words "eggs" and "larvae" are never mentioned.

* * *

Already there is evidence of at least one significant underwater die-off. In November Penn State biologist Charles Fisher led a NOAA-sponsored expedition that found colonies of ancient sea fans and other coral coated in brown sludge, 1,400 meters down. Nearly all the coral in the area was "dead or in the process of dying," Fisher told me. And he echoed something I heard from many other scientists: in a career of studying these creatures, he has never seen anything like this. There were no underwater pools of oil nearby, but the working theory is that subsea oil and dispersants must have passed through the area like some kind of angel of death.

We may never know what other organisms were trapped in a similarly lethal cloud, and that points to a broader problem: now that we are beyond the oil-covered-birds phase, establishing definitive links between the spill and whatever biogenetic or ecological disturbances are in store is only going to get harder. For instance, we know the coral died because of all the bodies: ghostly coral corpses litter the ocean floor near the wellhead, and Fisher is running tests to see if he can find a definitive chemical link to BP's oil. But that sort of forensics simply won't be possible for the much smaller life forms that are even more vulnerable to BP's toxic cocktail. When larval tuna or squid die, even in huge numbers, they leave virtually no trace. Hollander uses the phrase "cryptic mortality" to describe these phantom die-offs.

All this uncertainty will work in BP's favor if the worst-case scenarios eventually do materialize. Indeed, concerns about a future collapse may go some way toward explaining why BP (with the help of Kenneth Feinberg's Gulf Coast Claims Facility) has been in a mad rush to settle out of court with fishermen, offering much-needed cash now in exchange for giving up the right to sue later. If a significant species of fish like bluefin does crash three or even ten years from now (bluefin live for fifteen to twenty years), the people who took these deals will have no legal recourse. Even if a case did end up in court, beating BP would be tricky. As part of the damage assessment efforts, NOAA scientists are conducting studies that monitor the development of eggs and larvae exposed to contaminated water. But as Exxon's lawyers argued in the Valdez case, wild fish stocks are under a lot of pressure these days—without a direct chemical link to BP's oil, who's to say what dealt the fatal blow?

In a way, the lawyers will have a point, if a disingenuous one. As Ian MacDonald explains, it is precisely the multiple stresses on marine life that continue to make the spill so dangerous. "We don't appreciate the extent to which most populations are right on the edge of survival. It's very easy for populations to go extinct." He points to the sperm whales—there are only about 1,600 of them in the northern Gulf of Mexico, a small enough population that the unnatural death of just a few whales (which breed infrequently and later in life) can endanger the community's survival. Acoustic research has found that some sperm whales responded to the spill by leaving the area, a development that oceanographers find extremely worrying.

One of the things I am learning aboard the WeatherBird II, watching these scientists test for the effects of invisible oil on invisible organisms, is not to trust my eyes. For a few months last year, when BP's oil formed patterns on the surface of these waters that looked eerily like blood, industrial society's impact on the ocean was easy for all to see. But when the oil sank, it didn't disappear; it just joined so much else that the waves are hiding, so many other secrets we count on the ocean to keep. Like the 27,000 abandoned oil and gas wells in the Gulf of Mexico, and the network of unmonitored underwater pipelines that routinely corrode and leak. Like the sewage that cruise ships are entirely free to dump, under federal law, so long as they are more than three miles from shore. Like a dead zone the size of New Jersey. Scientists at Dalhousie University in Halifax predict that if we continue our rates of overfishing, every commercial fish stock in the world could crash by midcentury. And a study published in Nature in July found that global populations of phytoplankton have declined about 40 percent since 1950, linked with "increasing sea surface temperatures"; coral is bleaching and dying for the same reason. And on and on. The ocean's capacity to heal itself from our injuries is not limitless. Yet the primary lesson being extracted from the BP disaster seems to be that "mother nature" can take just about anything we throw at her.

As the WeatherBird II speeds off to the third research station, I find myself thinking about something New Orleans civil rights attorney Tracie Washington told me the last time I was on the Gulf Coast. "Stop calling me resilient," she said. "I'm not resilient. Because every time you say, 'Oh, they're resilient,' you can do something else to me." Washington was talking about the serial disasters that have battered New Orleans. But if the poisoned and perforated gulf could talk, I think it might say the same thing.

  • Share
  • Decrease text size Increase text size

Before commenting, please read our Community Guidelines.